Kernel Methods for Deep Learning
نویسندگان
چکیده
We introduce a new family of positive-definite kernel functions that mimic the computation in large, multilayer neural nets. These kernel functions can be used in shallow architectures, such as support vector machines (SVMs), or in deep kernel-based architectures that we call multilayer kernel machines (MKMs). We evaluate SVMs and MKMs with these kernel functions on problems designed to illustrate the advantages of deep architectures. On several problems, we obtain better results than previous, leading benchmarks from both SVMs with Gaussian kernels as well as deep belief nets.
منابع مشابه
Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery
The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...
متن کاملOptimizing Kernel Machines using Deep Learning
Building highly non-linear and non-parametric models is central to several state-of-the-art machine learning systems. Kernel methods form an important class of techniques that induce a reproducing kernel Hilbert space (RKHS) for inferring non-linear models through the construction of similarity functions from data. These methods are particularly preferred in cases where the training data sizes ...
متن کاملStochastic Variational Deep Kernel Learning
Deep kernel learning combines the non-parametric flexibility of kernel methods with the inductive biases of deep learning architectures. We propose a novel deep kernel learning model and stochastic variational inference procedure which generalizes deep kernel learning approaches to enable classification, multi-task learning, additive covariance structures, and stochastic gradient training. Spec...
متن کاملHow to Scale Up Kernel Methods to Be As Good As Deep Neural Nets
In this paper, we investigate how to scale up kernel methods to take on large-scale problems, on which deep neural networks have been prevailing. To this end, we leverage existing techniques and develop new ones. These techniques include approximating kernel functions with features derived from random projections, parallel training of kernel models with 100 million parameters or more, and new s...
متن کاملDeep Kernel Learning
We introduce scalable deep kernels, which combine the structural properties of deep learning architectures with the nonparametric flexibility of kernel methods. Specifically, we transform the inputs of a spectral mixture base kernel with a deep architecture, using local kernel interpolation, inducing points, and structure exploiting (Kronecker and Toeplitz) algebra for a scalable kernel represe...
متن کاملLearning Deep Context-Network Architectures for Image Annotation
Context plays an important role in visual pattern recognition as it provides complementary clues for different learning tasks including image classification and annotation. In the particular scenario of kernel learning, the general recipe of context-based kernel design consists in learning positive semi-definite similarity functions that return high values not only when data share similar conte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009